NOTATION

v is the velocity of fluid;

w is the intrinsic angular velocity of fluid;
P is the density;

p is the pressure;

t is the time;

T is the temperature;

g is the gravitational acceleration;

p is the isotropic specific heat;

0 is the thermal conductivity;

J is the scalar constant with dimensions of moment of inertia per unit mass;
w is the cyclic frequency;

K is the wave number;

o, B,Y, A, 4, k are the viscosity coefficients;

5ij is the Kronecker delta symbol;

&ijk is the Levi~Civita tensor density.
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OSCILLATIONS OF A VISCOELASTIC ROD TAKING
THERMOMECHANICAL COUPLING
INTOC ACCOUNT

V. G, Karnaukhov and B, P. Gumenyuk UDC 539,376

The effect of thermomechanical coupling on the forced longitudinal oscillations of a viscoelastic
rod is investigated,

The wide use of viscoelastic materials in many areas of modern technology makes it important to in~
vestigate their behavior under different conditions. In this connection, it is of particular interest to study the
interaction between the deformation and temperature fields, since viscoelastic materials have the ability to
dissipate mechanical energy, and exhibit a considerable temperature dependence of their physicomechanical
properties. Consideration of the thermomechanical coupling leads to nonlinearity in the mathematical formula-
tion of the problem, and enables a number of extremely interesting nonlinear effects fo be explained. These
features of viscoelastic materials manifest themselves most clearly during cyclical deformation, It is shown
in [1], usingthe example of the oscillations of a system with one degree of freedom (a large load on a visco-
elastic spring) that over a certain range of variation of the excitation parameter the amplitude —frequency and
temperature —frequency dependences are nonunique., These results were confirmed experimentally in [2]. A
similar problem was considered in [3] where it was established that for periodic deformations two stable sta-
tionary states with different temperatures are possible. In this paper we investigate the effect of thermome-
chanical coupling onthe dynamicbehavior of a viscoelastic rod for forced longitudinal oscillations. Subcritical
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and critical thermal states are distinguished. We mean by a critical state the characteristic limiting values
of the excitation parameter A; when this is exceeded, thermal instability occurs (a sharp avalanchelike in-
crease in temperature with time, the so-called thermal explosion), which leads to softening of the material.
This can form the basis for a criterion for the exhaustion of the carrying capaéity of components made of vis-
coelastic materials [4, 5].

Suppose a periodic force ox = 0gcog wt (0y = const) is applied to the ends of a viscoelastic rod; the side
surface and left end of the rod (x = 0) are thermally insulated, while the right end (x = I) is maintained at a
constant temperature Ty, The rod material is assumed to be thermorheologically simple. The frequency and
temperature dependence of the complex compliance for stretching has the form [6]

D* = Dy — iD, = (¢; — icy) 0 (T — Ty)*. (1)

The steady-state motion of such a rod in a stationary temperature field is described by the following nonlinear
system of differential equations [6]:

S'; + (1 4 0) (bysy + bys,) = 0,
S; + (l + 9)1’ (biSZ — bzsi) = 0, (2)

0" + by (1 + 0)¥(si + s3) = 0
with the boundary conditions

Sisso, Sz=0, 9’30 (§=0),

Sy=135p 55=0,0=0 E=1), G

where

1
50,1,2 = G0q,1,2; O = Gy + i0; & = (2A,p0T5)"2; E=x/l; 8= (T — Ty)/T;
Tz = To— Tlr b 1,3~ Ci'zplzﬁ)2+ﬂ7ﬂ2’.

The problem of determining the critical thermal state of the rod can be formulated as the problem of
finding the critical value of Ay of the parameter A, above which there are no solutions of the boundary-value
problem (2) and (3).

To solve Eqs. (2) and (3) we will use the finite-difference approach proposed and tested in [7]. The inter-
val 0 < £ < 1 will be divided into N parts of length h at the points §§ =jh G =0, 1, ... ,N), The introduction
of difference relations with a second order of approximation [8] leads to a system of 3N-3 nonlinear algebraic
equations in the quantities sy 5¢j) =1, 2, ..., N-1), 0¢p (=0, 2, 3,..., N—1), In this case 0, =
9(50)—bzs‘2,[1 + 0 ]Yh?%/2. The algebraic system obtained is solved by the method of steepest descent [9]. As
a result we obtain the stress state and the femperature, To calculate the critical thermal state we investi-
gated the dependence of the parameter

1 L

A= (ﬁ‘czlzmé'*'sTZ_") 2 gy 4)
q r

on the maximum temperature 6, = 6(0), where w; = ('lrz/c1pl2Tg')1/2 +B. The highest value on the A (8y) curve is the

critical value A, of the parameter A, The dependence A(9) is found by solving the above system of algebraic

equations in which the quantity 6, is assigned, while the parameter A is assumed to be required.

Numerical results obtained were for a rod of typical viscoelastic material with the following data [8]: p =
1214 kg/m3, ¢; = 4.43-10~ m*N, ¢, = 1.56- 1071 m?N, g =—0.214, y = 3.21, I = 0.0762 m, Aq = 0.15 W/m - deg,
T, = 18.3°C, and Ty = —87.2°C.

Figure 1 shows curves of A(9;) for w=1,5-103 sec™! (curve 1) and w = 410 sec™® (curve 2), We will
indicate the extremal values A° on the A(fy) curves: AD k=1, 2, 3, 4) are the maxima, and A{( k=1, 2, 3) are
the minima. For curve 1, A{ > Azs, and for curve 2, Af < A§. The presence of several maxima on the curve
confirms the existence of several stable states (the monotonically increasing parts) and unstable states (the
monotonically decreasing parts). These states are defined by the points of intersection of the straight line
A = const with the A(8y) curve., The realization of one state or another depends on the initial conditions of the
nonstationary problem. In a number of situations a change from one state to another is possible. The case
when the straight line A = const lies above the A(6y) curve, corresponds. to thermal instability. The critical
value Ay of the parameter A is the greatest of the values )\ﬁ.
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Fig., 1, Curves of A(6) for fixed values of the frequency: 1) w =
1.5-10° sec™!, 2) w=4-10% sec™?,

Fig. 2. Frequency dependence of the extremal values of the A%(w)
curves; w is in sec™,

Figure 2 shows curves of )\o(w); the continuous lines correspond to the Xﬁ(w) curves, and the dashed lines
correspond to the k{{(w) curves, Over the frequency range 0 < w =w, there are four stable states, forws < w =
w, there are three stable states, for wy < w = wy there are two stable states, and for w > w, there is one stable
state. In the range wy < w < w, transition from the first stable state to the second is possible (with A > Ais),
and in the range w; < w < w,, transition from the second stable state to the f%urth is possible (with A > )\5‘). In
the range 0 = w = wy, A =Af, for wy < w = wy, Ak =Ag, and for w> wy, Ax=1Ay.

For the subcritical thermal states (A < A,) the dependences of the temperature on the loading frequency
were obtained. Curves of 0,(w) are shown in Fig, 3a (A = 0.289 — curve 1, A = 0.42 — curve 2), 3b (A = 0,66),
and 3¢ (A = 0.84). The continuous lines correspond to stable branches of the curves, and the dashed lines to
unstable branches. Curve 1 in Fig. 3a is characteristic of the fact that the value A = 0.289 lies in the range of
variation of M(w). When w increases the temperature increases slowly to the point I (= 5-10° sec‘l), from
which a jump occurs to the point II on the second stable branch. When w is increased further, motionoccurs
along the part II-III. When w is reduced the temperature is determined by the point on the III-IV section; from
point IV (w = 3.3 10° sec™!) a jump occurs to the point V on the first stable branch; then the part V-0 is ob-
tained. The point of intersection of the straight line A = 0.289 and curve 1 in Fig., 2 corresponds to the point I.
The jump to point II occurs when the condition Af < 0,289 begins to be satisfied, The second point of intersec-
tion of the straight line A = 0.289 with curve 1' in Fig, 2 corresponds to point IV, A jump to point V occurs as
soon as the condition )\i’ > 0.289 begins to be satisfied as w decreases. If the initial condition of the nonstationary
problem is such that the stationary temperature is described by a point on the VI-VII branch, which, like the
TII-IV branch corresponds to the second stable branch of the A(0) curves, then as w increases, and reaches the
point VI (w= 1,15 103 sec‘l) a jump occurs to point VIII on the first stable branch. The first point of inter-
section of the straight line A = 0,289 with curve 1' in Fig. 2 corresponds to points VII. A jump occurs to point
VIII as soon as A} > 0.289 as w increases.

For curve 2 in Fig, 3a it is essential that the straight line A = 0,42 should lie above the A}(w) curve, In
this case, as w increases, and when the condition Af < 0,42 is satisfied (w = 4+10° sec™) a jump occurs from
point IX to the first stable branch at the point X on the second stable branch XI-XII, but when w decreases the
reverse jump from the second stable branch to the first does not occur.

The §(») curve in Fig. 3b represents the case when the straight line A = const intersects all the @)
curves, with the exception of Al(w). For this case the presence of isolated stable branches and two abrupt
transitiohs from the lower branches to the higher branches is characteristic. The curve 0-I is the first stable
branch, III-IV is the second, XIV-XV is the third, and the part X-XI and the curve V-VI is the fourth, When
w increases from 0 the branch 0-I is obtained. The point of intersection of the straight line A = 0,66 with the
MS (w) curve corresponds to point I (w= 2,75+ 10% sec™!. When )\15 < 0.66 a jump occurs to point II, The part II-
III is then obtained. The second point of intersection of the straight line A = 0,66 with the A§(w) curve cor-
responds to point Il (w = 1.36- 10* sec™!). When )\f < 0,66 intersection occurs at the point IV. The part IV-V
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of the amplitude of the dimension-
less stress at the middle point of

the rod.

is then obtained., The part V-VI is obtained as w decreases, The second point of intersection of the straight
line A = 0.66 with the AL (w) curve corresponds to the point VI (w=7.5-10° sec™!)., When A% < 0.66 a jump
occurs to VII, The part VII-VIII is then obtained. The first point of intersection of the straight line A = 0,66
with the ;‘zs (w) curve corresponds to the point VIII {w = 500 sec'l). A jump occurs from point VIII (for A§ < 0,66)
to point IX. The point of intersection of the straight line A = 0.66 with the Af () curve and the first point of
intersection of the straight line A = 0,66 with the Al(w) curve correspond to the points X (w=1.9.10° sec™!) and
XI (w = 3.3 10 sec”l). If the temperature is determined by points on the X-XI section, then from the point X,
as w decreases when and the condition Af < 0,66 is satisfied, and from the point XI, as w increases and when
the condition A} > 0,66 is satisfied, a jump occurs to the points XII and XIII, respectively. The points of inter-
section of the straight line A = 0,66 with the A§ (&) and Ay(w) curves correspond to the points XIV (w = 10° sec™)
and XV (w=1,1-10% sec™)), If the temperature is determmed by points on the XIV-XV section, then from the
point XIV, as w decreases, and when the condition 7t3 < 0,66 is satisfied, and from the point XV as w increases
and when the condition hz > 0.66 is satisfied, a jump occurs to the points XVI and XVII, respectively.

If the straight line A = const is situated above all the A (w) curves, a transition from the low-temperature
branches of the 6y(«) curve to the high~temperature branches can occur, but the reverse transition is impos-
sible. Figure 3c shows stable branches of the 6y(w) curve for A = 0,84. In this case they are isolated. The
pomt of intersection of the straight line A = 0,84 with the Af(w) curve corresponds to the pomt I (wp=2-10°
sec” ), and the first and second points of intersection of the straight line A 0.84 with the M(w) curve cor-
responds to the points I (wyy = 2.24- 10 Sec'l) and III {wygr = 8.05° +10% sec™ ), and the first and second points
of intersection of the straight line A = 0,84 with the 7\2 (@) curve correspond to points IV (wyy = 9-10° sec™!) and
V (wy = 1.76- 10* sec 1) In the ranges wy < w < wyf, wII[ < @ < wyy and w > wy thermal instability is observed.

The variation with frequency of the stress in the rod has the same form as the temperature variation,
Figure 4 shows the frequency dependence of the amplitude s, = (s? + s%)l/ %/s, of the dimensionless stress at
the middle point of the rod ¢ = 0,5) for A = 0,289,

1224



It follows from the above results that when thermomechanical coupling is taken into account a viscoelas-
tic rod behaves as a nonlinear mechanical system with a soft type of characteristic.

NOTATION
X is the coordinate along the rod;
1 is the length of the rod;
Cy, Cy, B, v, Ty are the constants of the material;
T is the temperature;
g =0y +i0y is the complex amplitude of the harmonic stress;
p is the density;
Ay is the thermal conductivity;
w is the angular frequency;
& 0, 54, 8 are the dimensionless coordinate, temperature, and stress components;
A is the dimensionless loading parameter.
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CALCULATION OF KINEMATIC COAGULATION OF AN
AEROSOL IN A VARIABLE-SPEED GAS STREAM

I. B, Palatnik and A. K. Azhibekov UDC 532.529.6

A method is suggested for calculating the kinematic coagulation of drops in a variable-speed gas
stream when they are broken up by the gas stream. The results of the calculation are compared
with test data,

The problem of coagulation, particularly of colloids, under the action of Brownian motion was first
analyzed by Smolukhovskii [1] for the case of an isodisperse distribution. The equations for the general case
of coagulation with a continuous polydisperse distribution were analyzed by Miiller [2] and Tunitskii [3].

Two approaches to the calculation of particle coagulation are known (see [4], for example)., The first
is based on the study of the evolution of the drop sizes of the fractions under consideration. This method, be-
cauge of a certain analogy with classical hydrodynamics, received the name of the Lagrange method., The
second is based on the determination of the numbers of particles of fixed sizes and is named the Euler method,

Henceforth we will analyze the problem of coagulation of a polydisperse system of particles by the Euler
method,

When the particle spectrum is assigned in the form of a varying mass distribution function

dN = f(m, 1) dm, 1)

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No, 4, pp. 698-704, October, 1978. Original
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